Tissue Engineering in Urethral Reconstruction

Vasileios P. Simaioforidis, Wouter F. Feitz


Tissue engineering is an integral part of regenerative medicine. It is based on principle of the use of biomaterials in the form of scaffolds and the transportation or seeding transplantation of cells under certain circumstances. These applications aim at the management of pathologic conditions where available tissue for reconstruction is inadequate and they cannot be repaired by classical surgical techniques. In the urological field, patients of all ages need urethral reconstruction, from hypospadias to urethral strictures. In this review the preclinical and clinical evidence regarding urethral tissue engineering is presented.

Εφαρμογές της Μηχανικής των Ιστών στη χειρουργική της ουρήθρας
Η μηχανική των ιστών αποτελεί αναπόσπαστο μέρος της αναγεννητικής ιατρικής. Βασίζεται στην αρχή της χρησιμοποίησης βιοϋλικών στην αντικατάσταση ιστών μέσω της κατασκευής ικριωμάτων και της υπό προϋποθέσεις μεταφοράς κυττάρων σε αυτά. Οι εφαρμογές αυτές αποσκοπούν στην αντιμετώπιση παθολογικών καταστάσεων, στις οποίες ο διαθέσιμος για ανακατασκευή ιστός είναι ανεπαρκής και δεν μπορούν να αντιμετωπιστούν με τις κλασικές χειρουργικές τεχνικές. Στο πεδίο της Ουρολογίας, ασθενείς από όλο το ηλικιακό φάσμα εμφανίζουν την ανάγκη χειρουργικής επέμβασης ανακατασκευής της ουρήθρας, όπως στην περίπτωση υποσπαδία ή ουρηθρικών στενωμάτων. Στην ανασκόπηση αυτή παρουσιάζονται οι εφαρμογές της μηχανικής των ιστών στην αντικατάσταση τμήματος της ουρήθρας σε προκλινικό και κλινικό επίπεδο.


Urethra; tissue engineering; biomaterials; scaffolds;ουρήθρα; μηχανική ιστών; βιοϋλικά; ικριώματα

Full Text:



Langer R, Vacanti JP. Tissue engineering. Science 1993, 14: 920-26

Hubbell JA. Biomaterials, in tissue engineering. Biotechnology (NY) 1995, 13: 565-76

Atala A, Guzman L, Retik AB. A novel inert collagen matrix for hypospadias repair. J Urol 1999, 163: 1148-51

Sievert KD, Bakircioglu ME, Nunes L, Tu R, Dahiya R, Tanagho EA. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol 2000, 163: 1958-65

Sievert KD, Wefer J, Bakircioglu ME, Nunes L, Dahiya R, Tanagho EA. Heterologous acellular matrix graft for reconstruction of the rabbit urethra: histological and functional evaluation. J Urol 2001, 165: 2096-102

Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible ”off the shelf” biomaterial for urethral repair. Urology 1999, 54: 407-10

Dorin RP, Pohl HG, De Filippo RE, Yoo JJ, Atala A. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol 2008, 26: 323-6

El-Kassaby A, AbouShwareb T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol 2008, 179: 1432-6

De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol

, 168: 1789-92

Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int 2007, 99: 1162-5

Xie H, Campbell CE, Shaffer BS, Gregory KW. Different outcomes in urethral reconstruction using elastin and collagen patches and conduits in rabbits. J Biomed Mater Res B Appl Biomater 2007, 81: 269-73

Kropp BP, Ludlow JK, Spicer D, Rippy MK, Badylak SF, Adams MC, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998, 52: 138-42

Grossklaus DJ, Shappell SB, Adams MC, Brock JW,3rd, Pope JC,4th. Small intestinal submucosa as a urethral coverage layer. J Urol 2001, 166: 636-9

Nuininga JE, Koens MJ, Tiemessen DM, Oosterwijk E, Daamen WF, Geutjes PJ, et al. Urethral reconstruction of critical defects in rabbits using molecularly defined tubular type I collagen biomatrices: key issues in growth factor addition. Tissue Eng Part A 2010, 16: 3319-28

El-Assmy A, El-Hamid MA, Hafez AT. Urethral replacement: a comparison between small intestinal submucosa grafts and spontaneous regeneration. BJU Int 2004, 94: 1132-5

Weiser AC, Franco I, Herz DB, Silver RI, Reda EF. Single layered small intestinal submucosa in the repair of severe chordee and complicated hypospadias. J Urol 2003, 170: 1593-5

Le Roux PJ. Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study. J Urol 2005, 173: 140-3

Hauser S, Bastian PJ, Fechner G, Muller SC. Small intestine submucosa in urethral stricture repair in a consecutive series. Urology 2006, 68: 263-6

Fiala R, Vidlar A, Vrtal R, Belej K, Student V. Porcine small intestinal submucosa graft for repair of anterior

urethral strictures. Eur Urol 2007, 51: 1702-8

Palminteri E, Berdondini E, Colombo F, Austoni E. 23 - 29 Small intestinal submucosa (SIS) graft urethroplasty:

short-term results. Eur Urol 2007, 51: 1695-701

Olsen L, Bowald S, Busch C, Carlsten J, Eriksson I. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol 1992, 26: 323-6

Bazeed MA, Thuroff JW, Schmidt RA, Tanagho EA. New treatment for urethral strictures. Urology 1983, 21: 53-7

Fu WJ, Wang ZX, Li G, Zhang BH, Zhang L, Hu K, et al. A surface-modified biodegradable urethral scaffold seeded with urethral epithelial cells. Chin Med J (Engl) 2011, 124: 3087-92

Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 2011, 377: 1175-82

Italiano G, Abatangelo G,Jr, Calabro A, Abatangelo GS, Zanoni R, O’Regan M, et al. Reconstructive surgery of the urethra: a pilot study in the rabbit on the use of hyaluronan benzyl ester (Hyaff-11) biodegradable grafts. Urol Res 1997, 25: 137-42

Feng C, Xu YM, Fu Q, Zhu WD, Cui L. Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng Part A 2011, 17: 3011-9

Boccafoschi F, Habermehl J, Vesentini S, Mantovani D. Biological performences of collagen-based scaffolds for vascular tissue engineering. Biomaterials 2005, 26: 7410-7

Patel A, Fine B, Sandig M, Mequanint K. Elastin biosynthesis: The missing link in tissue-engineered blood vessels. Cardiovasc Res 2006, 71: 40-9

Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Tissue Engineering in Urethral Reconstruction Grace PA, McGloughlin TM. Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 2008, 188: 333-46

Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 2008, 14: 199-215

Lepidi S, Grego F, Vindigni V, Zavan B, Tonello C, Deriu GP et al. Hyaluronan biodegradable scaffold for small-caliber artery grafting: preliminary results in an animal model. Eur J Vasc Endovasc Surg 2006, 32: 411-7

Zavan B, Vindigni V, Lepidi S, Iacopeti I, Avruscio G, Abatangelo G et al. Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. Faseb J 2008, 22: 2853-61

Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med 2001, 52: 443-51

Nuininga JE, van Moerkerk, H, Hanssen A, Hulsbergen CA, Oosterwijk-Wakka J, Oosterwijk E, de Gier et al. Rabbit urethra replacement with a defined biomatrix or small intestinal submucosa. Eur Urol 2003, 44: 266-71

Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppervelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 2007, 2896: 1123-31

Daher A, De Boer WI, El-Marjou A, van de Kwast T, Abbou CC, Thiery JP et al. Epidermal growth factor receptor regulates normal urothelial regeneration. Lab Invest 2003, 83: 1333-41

Lorentz KM, Yang L, Frey P, Hubbell JA. Enginee-red insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials 2012, 33: 494-503

Aboushwareb T, Atala A. Stem cells in urology. Nat Clin Pract Urol 2008, 5: 621—23 - 29

DOI: http://dx.doi.org/10.19264/hj.v26i2.59