Contemporary retrograde intrarenal surgery: Scopes and Lasers

Panagiotis Mourmouris


Flexible instrumentation is the mainstay of minimal invasive
stone surgery and this led to the invention of smaller and safer
instruments which performed remarkable good to a variety of
procedures. Further developments like digital technology and
single use ureteroscopes which along with similar technological
advances in lasers transformed flexible surgery in a tool of paramount
importance in the intrarenal surgery of various clinical
entities. We review the literature concerning the advances in the
field of scopes and lasers for retrograde intrarenal surgery in an
effort to find the optimal combination, if any, that potentially
produces the best surgical outcomes.


Flexible;ureteroscope;intrarenal surgery;lasers

Full Text:



Young HH, Mckay RW. Congenital valvular obstruction of the

prostatic urethra. Surg Gynecol Obstet 1929;48:509-35.

Huffman JL1. Early experience with the 8.5 F compact ureteroscope.

Surg Endosc. 1989;3(3):164-6.

Dretler SP1, Cho G. Semirigid ureteroscopy: a new genre J Urol.


Kavoussi L, Clayman RV, Basler J Flexible, actively deflectable

fiberoptic ureteronephroscopy. J Urol. 1989 Oct; 142(4):949-54.

Grasso M, Bagley D. A 7.5/8.2 F actively deflectable, flexible ureteroscope:

A new device for both diagnostic and therapeutic upper

urinary tract endoscopy. Urology. 1994;43:435–41.

Zilberman DE, Lipkin ME, Ferrandino MN, Simmons WN, Mancini

JG, Raymundo ME et al The digital flexible ureteroscope: in vitro

assessment of optical characteristics. J Endourol. 2011 Mar;


Gridley CM, Knudsen BE. Digital ureteroscopes: technology update.

Res Rep Urol. 2017;9:19-25.

Buscarini M, Conlin M. Update on flexible ureteroscopy. Urol Int.


Conlin MJ, Marberger M, Bagley DH: Ureteroscopy. Development

and instrumentation. Urol Clin North Am 1997; 24: 25–42

Bagley DH, Rittenberg MH: Intrarenal dimensions. Guidelines

for flexible ureteropyeloscopes. Surg Endosc 1987; 1: 119–121.

Hudson RG, Conlin MJ, Bagley DH: Ureteric access with flexible

ureteroscopes: effect of the size of the ureteroscope. BJU Int 2005;

: 1043–1044

Multescu R, Geavlete B, Geavlete P. A new era: performance and

limitations of the latest models of flexible ureteroscopes. Urology.


Knudsen B, Miyaoka R, Shah K, et al. Durability of the next generation

flexible fiberoptic ureteroscopes: a randomized prospective

multi-institutional clinical trial. Urology. 2010;75:534-538.

Monga M, Best S, Venkatesh R, et al. Durability of flexible ureteroscopes:

a randomized, prospective study. J Urol. 2006;176


Legemate JD, Kamphuis GM, Freund JE, Baard J, Zanetti SP, Catellani

M, Durability of Flexible Ureteroscopes: A Prospective Evaluation

of Longevity, the Factors that Affect it, and Damage Mechanisms.

Eur Urol Focus. 2018 Mar 10. pii: S2405-4569(18)30079-8.

Abdelshehid C, Ahlering MT, Chou D, Park HK, Basillote J, Lee D,

Comparison of flexible ureteroscopes: deflection, irrigant flow and

optical characteristics. J Urol. 2005 Jun;173(6):2017-21.

Pietrow PK, Auge BK, Delvecchio FC, Silverstein AD, Weizer AZ,

Albala DM et al Techniques to maximize flexible ureteroscope

longevity. Urology. 2002;60(5):784–788.

Carey RI, Gomez CS, Maurici G, Lynne CM, Leveillee RJ, Bird VG.

Frequency of ureteroscope damage seen at a tertiary care center.

J Urol. 2006; 176(2):607–610.

Shah K, Monga M, Knudsen B. Prospective randomized trial comparing

flexible digital ureteroscopes: ACMI/Olympus Invisio

DUR-D and Olympus URF-V. Urology. 2015;85(6):1267–1271

Aslan P, Kuo RL, Hazel K, Babayan RK, Preminger GM. Advances

in digital imaging during endoscopic surgery. J Endourol.


Saglam R, Muslumanoglu AY, Tokatli Z, et al. A new robot for flexible

ureteroscopy: development and early clinical results (IDEAL stage

-2b). Eur Urol. 2014;66(6):1092–1100

Binbay M, Yuruk E, Akman T, et al. Is there a difference in outcomes

between digital and fiberoptic flexible ureterorenoscopy procedures?

J Endourol. 2010;24(12):1929–1934.

Dragos LB, Somani BK, Sener ET, Buttice S, Proietti S, Ploumidis

A et al Which Flexible Ureteroscopes (Digital vs. Fiber-Optic)

Can Easily Reach the Difficult Lower Pole Calices and Have Better

End-Tip Deflection: In Vitro Study on K-Box. A PETRA Evaluation.

J Endourol. 2017 Jul;31(7):630-637.

Bagley DH. Flexible ureteropyeloscopy with modular, disposable endoscope. Urology 1987; 29:296

Ziemba JB, Matlaga BR. Understanding the costs of flexible ureteroscopy.

Minerva Urol Nefrol. 2016 Dec;68(6):586-91.

Ofstead CL, Heymann OL, Quick MR, Johnson EA, Eiland JE, Wetzler

HP. The effectiveness of sterilization for flexible ureteroscopes: A

real-world study. Am J Infect Control. 2017 Aug 1;45(8):888-95

Emiliani E, Traxer O. Single use and disposable flexible ureteroscopes.

Curr Opin Urol. 2017 Mar;27(2):176-181.

Tom WR, Wollin DA, Jiang R, et al. Next-Generation Single-Use Ureteroscopes:

An In Vitro Comparison. J Endourol. 2017 Dec;31(12):1301-6

Dragos L MS, Bhaskar S, Herrero M, Keller E, De Coninck V, Iacoboaie

C et al Comparison of eight digital (reusable and disposable) flexible

ureteroscopes deflection properties: invitro study in 10 different scope

setting. American Urologic Association; San Francisco: J Urol; 2018.

p. e917

Wiseman O KF, Traxer O, Giusti G, Lipkin M, Preminger G. A single-use

disposable digital flexible ureteroscope (LithovueTM) compared to

a non-disposable fibre-optic flexible ureteroscope in a live porcine

model. EAU; Copenhagen: European Urology Supplements; 2016.

p. eV76

Dale J, Kaplan AG, Radvak D, et al. Evaluation of a Novel Single-Use

Flexible Ureteroscope. J Endourol. 2017 Mar 2. PubMed PMID:

Hennessey DB, Fojecki GL, Papa NP, Lawrentschuk N, Bolton D. Single-

use disposable digital flexible ureteroscopes: an ex vivo assessment

and cost analysis. BJU Int. 2018 May;121 Suppl 3:55-61

Molina W WJ, da Silva R, Gustafson D, Nogueira L,Kim F. Cost analysis

of utilization of disposable flexible ureteroscopes in high risk for

breakage cases. American Urological Association Annual Conference;

San Francisco: J Urology; 2018. p. e1047.

Taguchi K, Usawachintachit M, Tzou DT, et al. Micro-Costing Analysis

Demonstrates Comparable Costs for LithoVue Compared to Reusable

Flexible Fiberoptic Ureteroscopes. J Endourol. 2018 Apr;32(4):267-73

Martin CJ, McAdams SB, Abdul-Muhsin H, et al. The Economic Implications

of a Reusable Flexible Digital Ureteroscope: A Cost-Benefit

Analysis. J Urol. 2017 Mar;197(3 Pt1):730-5.

Davis NF, Quinlan MR, Browne C, Bhatt NR, Manecksha RP, D'Arcy FT et

al Single-use flexible ureteropyeloscopy: a systematic review. World

J Urol. 2018 Apr;36(4):529-536

Teichmann HO, Herrmann TR, Bach T. Technical aspects of lasers in

urology. World J Urol. 2007 Jun;25(3):221-5.

Wollin TA, Denstedt JD. The holmium laser in urology. J Clin Laser

Med Surg. 1998 Feb;16(1):13-20

Sofer M, Watterson JD, Wollin TA, Nott L, Razvi H, Denstedt JD. Holmium:

YAG laser lithotripsy for upper urinary tract calculi in 598 patients

J Urol. 2002 Jan;167(1):31-4.

Grasso M, Chalik Y. Principles and applications of laser lithotripsy:

experience with the holmium laser lithotrite. J Clin Laser Med Surg.


Harrington, J. A. Infrared Fibers and their Applications (SPIE, 2004)

Dauw, C. A. et al. Contemporary practice patterns of flexible ureteroscopy

for treating renal stones: results of a worldwide survey. J.

Endourol. 29, 1221–1230 (2015).

Zorcher, T., Hochberger, J., Schrott, K. M., Kuhn, R. & Schafhauser, W.

In vitro study concerning the efficiency of the frequency- doubled

double- pulse Neodymium:YAG laser (FREDDY) for lithotripsy of calculi

in the urinary tract. Lasers Surg. Med. 25, 38–42 (1999).

Ebert, A., Stangle, J., Kuhn, R. & Schafhauser, W. The frequencydoubled

double- pulse Neodym:YAG laser lithotripter (FREDDY) in

lithotripsy of urinary stones. First clinical experience. Urologe A. 42,

–833 (2003).

Dubosq, F. et al. Endoscopic lithotripsy and the FREDDY laser: initial

experience. J. Endourol. 20, 296–299 (2006)

Yates, J., Zabbo, A. & Pareek, G. A comparison of the FREDDY and

holmium lasers during ureteroscopic lithotripsy. Lasers Surg. Med.

, 637–640 (2007)

Marguet CG1, Sung JC, Springhart WP, L'Esperance JO, Zhou S, Zhong

P et al In vitro comparison of stone retropulsion and fragmentation

of the frequency doubled, double pulse nd:yag laser and the holmium:

yag laser J Urol. 2005 May;173(5):1797-800.

Lee, H., Kang, H. W., Teichman, J. M., Oh, J. & Welch, A. J. Urinary

calculus fragmentation during Ho:YAG and Er:YAG lithotripsy. Lasers

Surg. Med. 38 39–51 (2006).

Fried, N. M. Potential applications of the erbium:YAG laser in endourology.

J. Endourol. 15, 889–894 (2001).

Fried NM, Irby PB. Advances in laser technology and fibre-optic delivery

systems in lithotripsy. Nat Rev Urol. 2018 Sep;15(9):563-573

Pal, D., Ghosh, A., Sen, R. & Pal, A. Continuous- wave and quasicontinuous

wave thulium- doped all- fibre laser: implementation

on kidney stone fragmentation. Appl. Opt. 55, 6151–6155 (2016).

Fried, N. M. Thulium fibre laser lithotripsy: an in vitro analysis of stone

fragmentation using a modulated 110W Thulium fibre laser at 1.94

μm. Lasers Surg. Med. 37, 53–58 (2005).

Griffin, S. Fibre optics for destroying kidney stones Biophotonics

International 11, 44–47 (2004).

Hardy, L. A., Wilson, C. R., Irby, P. B. & Fried, N. M. Rapid thulium fibre

laser lithotripsy at pulse rates up to 500 Hz using a stone basket. IEEE

J. Sel. Top. Quantum Electron. 20, 138–141 (2014)

Zamyatina, V. et al. Super pulse thulium fibre laser for lithotripsy

(abstract 28). Lasers Surg. Med. 48, 10 (2016).

Blackmon RL, Irby PB, Fried NM. Holmium:YAG (lambda = 2,120 nm)

versus thulium fiber (lambda = 1,908 nm) laser lithotripsy. Lasers

Surg Med. 2010 Mar;42(3):232-6.

Traxer O, Keller EX. Thulium fiber laser: the new player for kidney

stone treatment? A comparison with Holmium:YAG laser World J

Urol. 2019 Feb 6.